Experimental and theoretical studies of the decomposition of new imidazole based energetic materials: model systems.

نویسندگان

  • Zijun Yu
  • Elliot R Bernstein
چکیده

Decomposition of three imidazole based model energetic systems (2-nitroimidazole, 4-nitroimidazole, and 1-methyl-5-nitroimidazole) is investigated both experimentally and theoretically. The initial decomposition mechanism for these three nitroimidazoles is explored with nanosecond energy resolved spectroscopy, and quantum chemical theory at the complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from these three nitroimidazoles subsequent to UV excitation. A unique, excitation wavelength independent dissociation channel is observed for these three nitroimidazoles that generates the NO product with a rotationally cold (∼50 K) and a vibrationally mildly hot (∼800 K) distribution. Potential energy surface calculations at the CASSCF∕6-31G(d) level of theory illustrate that conical intersections play an important and essential role in the decomposition mechanism. Electronically excited S(2) nitroimidazole molecules relax to the S(1) state through the (S(2)∕S(1))(CI) conical intersection, and undergo a nitro-nitrite isomerization to generate the NO product from the S(1) potential energy surface. Nevertheless, NO(2) elimination and nitro-nitrite isomerization are expected to be competitive reaction mechanisms for the decomposition of these molecules on the ground state potential energy surface from the Franck-Condon equilibrium geometry through thermal dissociation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

محاسبه چگالی، گرمای تشکیل، سرعت و فشار انفجاری مشتقات نیتروآدامانتان

 The energetic materials have different military and civilian usages and development of new materials with higher efficiency is of interest. Because of hazards related to the synthesis of the energetic materials and to reduce laboratory related expenses, nowadays, using computational methods to evaluate the properties of the energetic compounds such as heat of formation, density, pressure ...

متن کامل

A competitive Diels-Alder/1, 3-dipolar cycloaddition reaction of1-H-imidazole 3-oxide toward sulfonyl methane. A DFT study on the energetic and regioselectivity

The dual diene/1,3-dipolar character of 1-H-imidazole 3-oxide, HIO 1, allows this compound toparticipate in a competitive Diels-Alder (DA)/1,3-dipolar cycloaddition (13DC) reaction toward C=Sdouble bond of the electro-deficient sulfonyl methane SFM 2. The B3LYP/6-311++G(d,p) calculatedrelative Gibbs free energies indicate that among the studied 13DC and DA reactions, former iscompletely preferr...

متن کامل

Synthesis and investigation the thermal behavior thermodynamically of new metal Complex of Cobalt nitrate

Increasing the molecular accumulation and density of high-energy substances have a determinative role in improving the performance and intensity of energy release. Therefore, it is possible to increase the density of high-energy materials if the high-energy molecules can be arranged around a metal core as coordinated molecules. The aim of this project was to synthesize energetic complexes of cy...

متن کامل

On the decomposition mechanisms of new imidazole-based energetic materials.

New imidazole-based energetic molecules (1,4-dinitroimidazole, 2,4-dinitroimidazole, 1-methyl-2,4-dinitroimidazole, and 1-methyl-2,4,5-trinitroimidazole) are studied both experimentally and theoretically. The NO molecule is observed as a main decomposition product from the above nitroimidazole energetic molecules excited at three UV wavelengths (226, 236, and 248 nm). Resolved rotational spectr...

متن کامل

On the excited electronic state dissociation of nitramine energetic materials and model systems.

In order to elucidate the difference between nitramine energetic materials, such as RDX (1,3,5-trinitro-1,3,5-triazacyclohexane), HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane), and their nonenergetic model systems, including 1,4-dinitropiperazine, nitropiperidine, nitropyrrolidine, and dimethylnitramine, both nanosec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 137 11  شماره 

صفحات  -

تاریخ انتشار 2012